Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress.

نویسندگان

  • Shengke Tian
  • Lingli Lu
  • Jie Zhang
  • Kai Wang
  • Patrick Brown
  • Zhenli He
  • Jun Liang
  • Xiaoe Yang
چکیده

Sedum alfredii is a well-known Cd (cadmium) hyperaccumulator native to China. The impacts of exogenous Ca on Cd-induced oxidative stress and antioxidant systems in roots of S. alfredii were investigated by using cellular and biochemical approaches. Supplementation of the medium with higher Ca levels resulted in alleviated growth inhibition and decreased Cd concentration, as well as increased Ca concentration in roots. Cadmium induced lipid peroxidation and loss of plasma membrane integrity, reactive oxygen species overproduction, as well as ultrastructural changes of root cells were largely reversed by Ca supplementation in the medium. Calcium application significantly altered the Cd effects on antioxidant enzymes and non-enzyme antioxidants (non-protein thiols), and significantly increased glutathione (GSH) biosynthesis. The results suggest that Ca is able to protect the roots of S. alfredii against Cd toxicity by restoration of Cd-displaced Ca, alleviation of the metal induced oxidative stress, as well as promotion of GSH biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

Superoxide dismutase (SOD) is a very important reactive oxygen species (ROS)-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD), from Sedum alfredii, a cadmium (Cd)/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT) plants, overexpression of SaCu/Zn SOD gene in ...

متن کامل

The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii

Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitransp...

متن کامل

Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance

The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-t...

متن کامل

Transcriptome Comparison Reveals the Adaptive Evolution of Two Contrasting Ecotypes of Zn/Cd Hyperaccumulator Sedum alfredii Hance

Hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance belong to the same species but exhibit contrasting characteristics regarding hyperaccumulation and hypertolerance to cadmium and zinc. The Illumina Hiseq 2500 platform was employed to sequence HE and NHE to study the genetic evolution of this contrasting trait. Greater than 90 million clean reads were...

متن کامل

The Variation of Root Exudates from the Hyperaccumulator Sedum alfredii under Cadmium Stress: Metabonomics Analysis

Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd). S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 2011